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Robust Replication of Genotype-Phenotype
Associations across Multiple Diseases
in an Electronic Medical Record

Marylyn D. Ritchie,2,7,9 Joshua C. Denny,5,6,9 Dana C. Crawford,2,7 Andrea H. Ramirez,6

Justin B. Weiner,6 Jill M. Pulley,3 Melissa A. Basford,1,3 Kristin Brown-Gentry,2 Jeffrey R. Balser,3,4,8

Daniel R. Masys,5 Jonathan L. Haines,2,7 and Dan M. Roden1,6,8,*

Large-scale DNA databanks linked to electronic medical record (EMR) systems have been proposed as an approach for rapidly generating

large, diverse cohorts for discovery and replication of genotype-phenotype associations. However, the extent to which such resources are

capable of delivering on this promise is unknown. We studied whether an EMR-linked DNA biorepository can be used to detect known

genotype-phenotype associations for five diseases. Twenty-one SNPs previously implicated as common variants predisposing to atrial

fibrillation, Crohn disease, multiple sclerosis, rheumatoid arthritis, or type 2 diabetes were successfully genotyped in 9483 samples

accrued over 4 mo into BioVU, the Vanderbilt University Medical Center DNA biobank. Previously reported odds ratios (ORPR) ranged

from 1.14 to 2.36. For each phenotype, natural language processing techniques and billing-code queries were used to identify cases

(n ¼ 70–698) and controls (n ¼ 808–3818) from deidentified health records. Each of the 21 tests of association yielded point estimates

in the expected direction. Previous genotype-phenotype associations were replicated (p< 0.05) in 8/14 cases when the ORPR was> 1.25,

and in 0/7 with lower ORPR. Statistically significant associations were detected in all analyses that were adequately powered. In each of

the five diseases studied, at least one previously reported association was replicated. These data demonstrate that phenotypes represent-

ing clinical diagnoses can be extracted from EMR systems, and they support the use of DNA resources coupled to EMR systems as tools for

rapid generation of large data sets required for replication of associations found in research cohorts and for discovery in genome science.
Introduction

The deployment of electronic medical record (EMR)

systems offers the hope of improving routine care, not

only by enhancing individual practitioner access to patient

information but also by aggregating information for clin-

ical research and quality improvement.1 EMRs and associ-

ated support systems can reduce medication errors, costs,

and inappropriate testing and improve quality of care,

physician documentation, and guideline adherence.2–8

Because EMRs contain large populations with diverse

diseases, they have the potential to act as platforms for

generating sets of cases and controls for clinical and

translational research. Potential advantages of such an

approach include rapid and inexpensive creation of large,

inclusive patient sets,9 as well as support for studies of

disease-disease or disease-drug interactions over time. An

especially appealing, albeit complex, vision is one in

which dense genomic information is accrued into EMRs,

ultimately enabling discovery and incorporation into prac-

tice of new genotype-phenotype associations.10–12

Implementing such a vision requires that major obstacles

be overcome, including technological, computational, ethi-

cal, and financial issues, and determining whether genomic

information will meaningfully inform clinical decision

making and healthcare outcomes. An important hypothesis

to be tested13 is the idea that large biorepositories containing
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DNA samples linked to EMRs can be used to address these

challenges to augment or supplement traditional research

designs in which cases and controls are prospectively

enrolled and phenotype data are systematically collected.

BioVU, the Vanderbilt DNA databank,14 represents such

a biorepository. To test the utility of the resource in

addressing these challenges, we genotyped the first ~10,000

samples accrued (over 4 mo) for SNP sites reproducibly

associated with a range of human diseases. Automated

queries were then developed, validated, and deployed for

the identification of cases and controls in five common

diseases, and previously reported genotype-phenotype rela-

tionships were examined. Our results provide support for

the concept that biorepositories linked to ‘‘real-world’’

EMR data represent robust tools for accelerating genome-

driven diagnostics and therapeutics.
Subjects and Methods

Inclusion and Exclusion Criteria
BioVU accrues DNA samples extracted from blood remaining from

routine clinical testing after the samples have been retained for

3 days and are scheduled to be discarded. A full description of

the resource and its ethical protections has been published else-

where.14 The resource contains data and tissues that are deidenti-

fied in accordance with provisions of Title 45, Code of Federal

Regulations, part 46 (45 CFR 46) that define criteria for
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investigations that are considered ‘‘nonhuman subjects’’ research.

Exclusion criteria are as follows: poor-quality or insufficient DNA,

age < 18 yrs, absence of a signed consent-to-treatment form,

a formal indication (on the consent-to-treatment form or else-

where) that an individual wishes to opt out, or duplicate samples.

In addition, a small percentage (~2%) of patients is randomly

excluded from BioVU so that it is not possible to know whether

any individual’s sample is or is not included in the biobank. The

project has been reviewed and approved at multiple levels,

including the institutional review board, internal and external

ethics committees, the community advisory board and the legal

department (Nashville, TN, USA), as well as the Federal Office of

Human Research Protection (Washington, D.C., USA), and this

oversight is ongoing. As of March 22, 2010. the resource included

80,635 samples, with an accrual rate of ~500–700 per wk.

Phenotypes and Genotypes Analyzed
Our aim was to study SNPs previously and reproducibly associated

in GWAS with susceptibility to common diseases and to determine

whether those associations could be replicated with the use of

only the information derived from the EMR to determine case

and control status. The conditions chosen were atrial fibrillation

(AF),15 Crohn disease (CD),16–18 multiple sclerosis (MS [MIM

126200]),19,20 rheumatoid arthritis (RA [MIM 180300]),16,21 and

type 2 diabetes (T2D [MIM 125853]), because there were several

single locus hits to replicate for each disorder and the diseases

varied in level of difficulty for the EMR phenotype abstrac-

tion.16,22–24 The assayed SNPs and their primer sequences are pre-

sented in Table S1, available online. We selected 21 SNPs that had

consistently shown replication for these diseases by late 2007; SNP

associations studied after this date were therefore not included.

The individuals studied were accrued in the first 4 mo of operation

of the resource.

We selected this set of diseases and SNPs to ask the question of

whether EMR-derived phenotypes can be used for human

genetic-association studies. The previously reported odds ratios

(ORPR) for the SNPs that we examined ranged from 1.14 to 2.36.

Table S1 also presents power calculations25 performed in deter-

mining the sample size needed to replicate each ORPR at 80%

power, given reported allele frequencies in cases and controls for

each disease, for determining whether we were powered to detect

the selected effects.

Identifying Cases and Controls
For each disease, cases and controls were identified in the

Synthetic Derivative, a deidentified image of the EMR linked to

BioVU by anonymous research unique identifiers.14 The Vander-

bilt EMR began accumulating clinical data in the early 1990s

and now includes all inpatient and outpatient billing codes, labo-

ratory values, reports, and clinical documentation, almost all in

electronic formats available for searching. It currently contains

over 120 million documents on about 2 million patients.26 The

synthetic derivative is refreshed monthly to add new clinical infor-

mation from the EMR as it is accrued.

For each disease, content experts (listed in Acknowledgments)

were consulted to develop algorithms that segmented the deidenti-

fied EMR data into four groups: definite cases (algorithm-defined);

possible cases (requiring manual curation); exclusions for match-

ing potentially overlapping diseases or symptoms or insufficient

data for classifying; and controls (algorithm-defined). The selection

algorithms are presented in the Appendix. In brief, cases were

selected via disease-specific combinations of billing codes, patient
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encounters, laboratory data, and natural language processing

(NLP) techniques on unstructured patient records such as medica-

tions, electrocardiograms, or past medical history. To define con-

trols, we adopted criteria to ensure that the diagnosis had been

sought and was absent. This generally included visits to primary

care or internal medicine clinics with nonempty ‘‘past medical

history’’ sections and medication lists. In addition, controls for

atrial fibrillation all had electrocardiograms that did not show atrial

fibrillation. We also excluded potentially overlapping conditions,

such as other inflammatory arthritides from rheumatoid arthritis

controls and autoimmune diseases from rheumatoid arthritis,

multiple sclerosis, and Crohn disease controls.

Initial algorithms were developed to identify records from each

of the four classifications from the samples in the synthetic deriv-

ative, and the results were reviewed by two physicians not associ-

ated with algorithm development. The results of the manual

classification were then used to improve the algorithms, and the

procedure was iterated until the positive predictive value (PPV)

reached designated targets of R 95% for definite cases and R

98% for controls. In each algorithm iteration, the physicians

reviewed a different set of 50 randomly selected cases and controls,

and the final algorithm-performance numbers represent the

performance of the algorithm on a test set not previously reviewed

by either the algorithm developers or the physician reviewers.

The final algorithms were then applied to the initial BioVU sample

set of 9483 subjects. Populations for cases and controls for

rheumatoid arthritis, Crohn disease, atrial fibrillation, and type 2

diabetes were defined exclusively by the final algorithm. Each

phenotype algorithm was run on the full set of 9483 subjects

such that a particular person could be a case for one condition,

a control for one or more other conditions, or unknown for one

or more other conditions. Because of the low count of definite

and possible cases for multiple sclerosis, we tuned the multiple

sclerosis algorithm for sensitivity and the physician reviewers

manually reviewed the electronic records of all definite and

possible cases.

Data Analysis
Genotyping was conducted by the Vanderbilt DNA Resources Core

with the use of the midthroughput Sequenom genotyping plat-

form, based on a single-base primer extension reaction coupled

with mass spectrometry. Quality-control procedures included

examination of marker and sample genotyping efficiency, allele-

frequency calculations, and tests of Hardy-Weinberg equilibrium

(HWE). As described in Results, some SNPs poorly assayed on the

Sequenom platform (as indicated by deviations from HWE) were

regenotyped with TaqMan assays and the ABI Prism 7900HT

Sequence Detection System (Applied Biosystems).

Ancestry was derived from administrative data recorded in the

EMR; 9.2% of records did not include recorded ancestry or recorded

the ancestry as ‘‘unknown.’’ Accordingly, the data were analyzed

with respect to ancestry in two different ways. In the first, only cases

and controls that had ‘‘non-Hispanic white’’ (European American)

coded in the EMR were used, whereas in the second, records desig-

nated as either ‘‘non-Hispanic white’’ or ‘‘unknown’’ were included.

Preliminary data directly examining ancestry-informative markers

in the BioVU ‘‘unknown’’ group indicate that>85% of cases cluster

with European Americans (Ritchie et al., poster presented as part of

the Illumina Technology Workshops at the ASHG 59th Annual

Meeting, Honolulu, HI, USA, October 22, 2009). Thus, we expect

that both the non-Hispanic white and the non-Hispanic white þ
unknown records are primarily European American.
erican Journal of Human Genetics 86, 560–572, April 9, 2010 561



Figure 1. Identifying Cases and Controls
The numbers presented are for European
American subjects, with a definite diag-
nosis. Table S2 presents the numbers for
other groupings studied here.
Single-locus tests of association (cases versus controls) were

conducted for each previously reported SNP. We calculated allelic

(chi-square) and genotypic (logistic regression) ORs and 95%

confidence intervals (CIs) for dominant, additive, and recessive

genetic models. All statistical analyses were conducted in SAS,

version 9.1, with the use of two-tailed tests.
Role of the Funding Source
The sponsor of the study had no role in study design, data collec-

tion, data analysis, data interpretation, writing of the report, or the

decision to submit for publication. The corresponding author had

full access to all the data in the study and had final responsibility

for the decision to submit for publication.
Results

Identifying Cases and Controls

The positive predictive values of case and control selection

algorithms were 97%–100%, except for multiple sclerosis,

in which algorithm-classified possible cases were also man-

ually reviewed because of small sample size (Table S2).

For the rheumatoid arthritis and multiple sclerosis pheno-

types, we identified both definite cases and definite cases

with other, potentially overlapping, autoimmune diseases

(‘‘probable cases’’): for rheumatoid arthritis, there were

174 definite cases of European ancestry and 346 definite þ
probable cases of European or unknown ancestry, and the

corresponding figures for multiple sclerosis were 70 and

124, respectively.

Figure 1 shows the distribution of cases and controls

across the five phenotypes analyzed. In the set of 9483

records analyzed by NLP for the five diseases, there were

1212 definite cases of European ancestry and 5114 con-

trols. There were 4072 that served as either a case or a

control in more than one analysis.

Genotyping

A total of 9483 samples were genotyped for 23 SNPs across

the five diseases with the use of the Sequenom platform.

We excluded 1847 samples with genotyping efficiency <

90% from data analysis. These failures were primarily

from the first several plates processed and reflected the

fact that this was the first set of DNA samples genotyped

with the use of the Sequenom technology in the DNA
562 The American Journal of Human Genetics 86, 560–572, April 9, 2010
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efficiency for individual SNPs varied

from 95.4%–100% (Table S3). The

number of definite cases of European

ancestry in which genotyping was

successful ranged from 61 (multiple
sclerosis) to 510–533 (type 2 diabetes; depending on

the specific SNP), with 658–2884 controls (Table 1 and

Table S4).

Four SNPs were flagged because of significant deviations

from HWE at p < 0.05. Two of these (rs7901695 and

rs7903146), both in TCF7L2 (MIM 602228) and associated

with type 2 diabetes, are in linkage disequilibrium with

other markers studied here in the same gene (based on the

HapMap) and so were eliminated from further analysis.

One rheumatoid arthritis-associated SNP in the HLA cluster

on chromosome 6 (MIM 142860), rs6457617, could not be

successfully assayed with Sequenom or TaqMan. We there-

fore dropped this SNP and instead genotyped rs6457620 by

using a TaqMan assay (genotyping efficiency ¼ 99.46%;

HWE p value ¼ 0.26). The SNP rs6457620 is in complete

linkage disequilibrium with rs6457617 (r2¼ 1) in the Inter-

national HapMap Project samples of European ancestry

(CEU).27 The fourth SNP, rs2200733, an atrial-fibrillation-

associated variant, had low genotyping efficiency in

addition to deviation from HWE (p < 0.05). This SNP was

successfully genotyped with TaqMan (genotyping effi-

ciency ¼ 99%; HWE p value ¼ 0.64). The final analysis

therefore included 21 SNPs.

Genotype-Phenotype Associations

The number of cases needed to achieve 80% power at a ¼
0.05 for the SNPs studied varied widely, from 75 to 3111,

assuming a 1:2 ratio of cases versus controls (Table S1).

This range reflects the ORPR and minor allele frequencies

(MAFs) in cases and controls. Table S1 also presents the

number of cases needed assuming other ratios of cases

to controls, from 1:1 to 1:4. Increasing the number of

controls 4-fold resulted in a modest reduction, ~30%, of

the cases needed.

Figure 2 presents the calculated allelic OR and 95% CIs,

with the use of definite cases and controls and European

ancestry only. In addition to the results from BioVU data,

we plot the OR for the original GWAS result; subsequent

publications confirming these results have very similar

values (data not shown). For example, the SNP

rs4506565 in TCF7L2 has previously been associated

with type 2 diabetes, with an ORPR of 1.37 and MAFs of

0.32 in cases and 0.39 in controls.24 To replicate this

finding assuming a similar genetic effect size, we would



need to identify 503 cases and 1006 controls. Genotyping

in subjects identified by the phenotype algorithms resulted

in 532 definite cases (MAF 0.35) and 886 controls (MAF

0.31), resulting in a calculated allelic OR of 1.29 (95% CI:

1.09–1.53; p ¼ 0.009; Table S4). The genotypic OR was

1.23 (1.05–1.45; p ¼ 0.006; Table S4). Homozygotes for

the minor (risk) allele had an OR of 1.7 (1.22–2.38; p ¼
0.0016) compared to homozygotes for the major allele or

heterozygotes. The results were very similar when the

553 cases and 1100 controls of European or unknown

ancestry were analyzed. Table 1 presents the results of all

allelic analyses, and Table S4 presents the genotypic anal-

yses, for both European and European þ unknown

ancestry, and for definite as well as definite þ probable

cases (rheumatoid arthritis and multiple sclerosis).

All 21 comparisons resulted in OR point estimates in the

expected direction, and for each of the five diseases studied,

at least one previously reported SNP association was

replicated (p < 0.05 for allelic OR). Two sets of SNPs in

type 2 diabetes were in LD with one another and, comfort-

ingly, showed similar results. The SNPs rs4506565,

rs1224332, and rs225537 (in or near TCF7L2) have pairwise

r2 values of between 0.658 and 0.902; all three SNPs were

statistically significantly associated with type 2 diabetes.

Similarly, rs5215 and rs5219 (in KCNJ11 [MIM 600937])

have a pairwise r2 of 0.994, and both were nonsignificant.

The analyses in Figure 2 are ordered by the number of cases

required for replication, and they show that the fewer cases

required, the greater the likelihood of replication with 95%

CIs of the point estimate not overlapping unity. When

fewer than 1000 cases were required, 8/12 associations

replicated in this fashion, whereas there was no replication

(0/9) of associations predicted to require more than 1000

cases. Similarly, a low ORPR implied that a large number of

cases would be required for replication: indeed, 8/14 associ-

ations with an ORPR > 1.25 replicated, in contrast to 0/7

with ORPR % 1.2.

Analyses that included the slightly larger numbers of

subjects whose ancestry was European or unknown yielded

the same results: replication of the same 8/14 associations

with ORPR > 1.25. When both definite and probable

cases for rheumatoid arthritis and multiple sclerosis were

included in the case series, one more association was repli-

cated in the rheumatoid arthritis set (Table 1).
Discussion

We demonstrate here that common genetic variants asso-

ciated with disease can be replicated with the use of

samples from a DNA databank coupled to a deidentified

EMR, in effect rejecting the null hypothesis that EMR-

derived phenotypes are insufficiently distinct or detailed

to identify such associations that historically have been

observed in carefully characterized research cohorts. We

examined SNPs with a wide range of ORPR, from 1.14 to

2.36, and showed that the likelihood that we could repli-
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cate any genotype-phenotype association in this set of

9483 records varied directly with the genetic effect size

of the previously reported association. These records

were selected because they were the first accrued into the

resource and were accrued with no knowledge of under-

lying disease frequencies. The time required to generate

this set from which the cases and controls were identified

was only 4 mo.

Accruing, defining, and accessing samples presented

multiple technical challenges, so establishing appropriate

quality-control checks was vital to the success of this

experiment and to use of any biorepository. Before geno-

typing and phenotyping, we validated sample-handling

algorithms by using gender testing, as previously re-

ported.14 A critical challenge was the definition of cases

and controls, both of which represent unique challenges

in the EMR and require nuanced application of informa-

tion-extraction techniques. It was not unusual to find cases

in which a rheumatoid arthritis or multiple sclerosis code

from the International Statistical Classification of Diseases

and Related Health Problems, revision 9 (ICD-9 code) was

associated with a clinic visit, only to have the diagnosis

subsequently overturned by a specialist consultation.

Thus, the case definitions each relied on both coded and

unstructured, free-text data, such as diagnoses, medica-

tions, or laboratory findings. Similarly, the criteria for

controls were not simply the absence of the condition,

but also included the absence of clinically similar condi-

tions and included documentation that the condition

was sought as well as absence of clinically similar condi-

tions. Assurance that controls do not have the disease is

especially important for relatively common diseases such

as diabetes, although it is potentially less impactful for

rare diseases such as multiple sclerosis. To avoid introduc-

tion of bias in our control populations by overly restrictive

criteria, these algorithms ensured that control subjects did

not have the case (or similar) diseases through clinic visits

with past medical history assessments, common labora-

tory values, and normal electrocardiograms.

The BioVU DNA Databank currently uses ancestry

assigned in administrative (e.g., billing) databases. The

9483 records analyzed included 77% European American,

11% African American, 1% Hispanic, 1% Asian, and 1%

other; an explicit statement of ancestry is absent in 9% of

records. Including the samples of unknown ancestry did

not alter the results, possibly because the majority of our

population is non-Hispanic European American. The accu-

racy of ancestry information contained in administrative

databases is unknown, although self-reported ancestry

agrees well with genetically determined race.28 Our current

evaluation of the ancestry of the ‘‘unknown’’ population of

BioVU indicates that the majority of these individuals are

European American (Ritchie et al., poster presented as part

of the Illumina Technology Workshops at the ASHG 59th

Annual Meeting, Honolulu, HI, USA, October 22, 2009).

Although EMR-based phenotyping can be complex, as

discussed above, the approach also has potential
erican Journal of Human Genetics 86, 560–572, April 9, 2010 563



Table 1. Allelic Odds Ratio

SNP

Cases Controls Cases Cases Controls Controls

N N
Minor Allele
Frequency

Minor
Allele

Minor Allele
Frequency

Minor
Allele

Allelic Chi-Square
p Value Odds Ratio

95% Confidence
Interval

ATRIAL FIBRILLATION

Ancestry: Non-Hispanic European; Case Definition: Definite

rs2200733 147 1439 0.1599 T 0.1120 T 0.0147 1.5093 (1.08–2.11)

rs10033464 143 1402 0.1084 T 0.0881 T 0.2530 1.2585 (0.85–1.87)

Ancestry: Non-Hispanic European þ Unknown; Case Definition: Definite

rs2200733 148 1467 0.1588 T 0.1115 T 0.0153 1.5048 (1.08–2.10)

rs10033464 144 1432 0.1111 T 0.0887 T 0.2066 1.2844 (0.87–1.90)

CROHN DISEASE

Ancestry: Non-Hispanic European; Case Definition: Definite

rs11805303 107 2884 0.3271 T 0.3017 T 0.4263 1.1253 (0.84–1.51)

rs17234657 106 2890 0.2028 G 0.1201 G 0.0003 1.8646 (1.32–2.63)

rs1000113 107 2905 0.0935 T 0.0730 T 0.2601 1.3096 (0.82–2.10)

rs17221417 107 2896 0.3785 G 0.2949 G 0.0086 1.4562 (1.10–1.93)

rs2542151 107 2901 0.1542 G 0.1649 G 0.6774 1.0834 (0.74–1.58)

Ancestry: Non-Hispanic European þ Unknown; Case Definition: Definite

rs11805303 110 3175 0.3288 T 0.3054 T 0.4557 1.1145 (0.84–1.45)

rs17234657 110 3182 0.1955 G 0.1204 G 0.0009 1.7756 (1.23–2.50)

rs1000113 111 3199 0.0946 T 0.0769 T 0.3323 1.2542 (0.79–1.98)

rs17221417 111 3188 0.3874 G 0.2917 G 0.0021 1.5353 (1.17–2.02)

rs2542151 111 3195 0.1577 G 0.1635 G 0.8158 1.0446 (0.72–1.51)

MULTIPLE SCLEROSIS

Ancestry: Non-Hispanic European; Case Definition: Definite

rs6897932 61 1861 0.2049 T 0.2515 T 0.2425 1.3036 (0.83–2.04)

rs3135388 61 1892 0.2887 T 0.1427 T <0.0001 2.3210 (1.55–3.48)

rs2104286 61 1888 0.2377 A 0.2582 A 0.6102 1.1163 (0.73–1.70)

Ancestry: Non-Hispanic European þ Unknown; Case Definition: Definite

rs6897932 88 2105 0.2045 T 0.2485 T 0.1855 1.2857 (0.89–1.87)

rs3135388 88 2139 0.2955 T 0.1431 T <0.0001 2.5120 (1.80–3.51)

rs2104286 88 2133 0.2102 A 0.2586 A 0.1503 1.3101 (0.91–1.89)

Ancestry: Non-Hispanic European; Case Definition: Definite þ Probable

rs6897932 68 1861 0.2132 T 0.2515 T 0.3118 1.2396 (0.82–1.88)

rs3135388 68 1892 0.2574 T 0.1427 T 0.0002 2.0818 (1.40–3.09)

rs2104286 68 1888 0.2279 A 0.2582 A 0.4275 1.1790 (0.78–1.77)

Ancestry: Non-Hispanic European þ Unknown; Case Definition: Definite þ Probable

rs6897932 96 2105 0.2083 T 0.2485 T 0.2072 1.2563 (0.88–1.79)

rs3135388 96 2139 0.2760 T 0.1431 T <0.0001 2.2840 (1.65–3.17)

rs2104286 96 2133 0.2083 A 0.2586 A 0.1190 1.3252 (0.93–1.89)
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Table 1. Continued

SNP

Cases Controls Cases Cases Controls Controls

N N
Minor Allele
Frequency

Minor
Allele

Minor Allele
Frequency

Minor
Allele

Allelic Chi-Square
p Value Odds Ratio

95% Confidence
Interval

RHEUMATOID ARTHRITIS

Ancestry: Non-Hispanic European; Case Definition: Definite

rs6679677 134 658 0.1194 A 0.1003 A 0.3496 1.2162 (0.81–1.83)

rs2476601 134 659 0.1194 A 0.1002 A 0.3454 1.2183 (0.81–1.84)

rs6457620 138 662 0.3370 T 0.4977 T <0.0001 1.9501 (1.49–2.56)

Ancestry: Non-Hispanic European þ Unknown; Case Definition: Definite

rs6679677 184 745 0.1141 A 0.0943 A 0.2609 1.2326 (0.86–1.78)

rs2476601 184 746 0.1141 A 0.0945 A 0.2576 1.2344 (0.86–1.88)

rs6457620 188 750 0.3601 T 0.4973 T <0.0001 1.6689 (1.33–2.09)

Ancestry: Non-Hispanic European; Case Definition: Definite þ Probable

rs6679677 210 658 0.1286 A 0.1003 A 0.1029 1.3235 (0.94–1.85)

rs2476601 210 659 0.1262 A 0.1002 A 0.1319 1.2975 (0.92–1.82)

rs6457620 214 662 0.3626 T 0.4977 T <0.0001 1.7422 (1.39–2.18)

Ancestry: Non-Hispanic European þ Unknown; Case Definition: Definite þ Probable

rs6679677 272 745 0.1250 A 0.0946 A 0.0459 1.3667 (1.00–1.86)

rs2476601 272 746 0.1232 A 0.0945 A 0.0589 1.3459 (0.99–1.83)

rs6457620 277 750 0.3776 T 0.4896 T <0.0001 1.6521 (1.35–2.02)

TYPE 2 DIABETES

Ancestry: Non-Hispanic European; Case Definition: Definite

rs4402960 527 877 0.3083 T 0.3079 T 0.9787 1.0023 (0.85–1.18)

rs10811661 534 887 0.1610 C 0.1753 C 0.3269 1.1074 (0.90–1.36)

rs4506565 532 886 0.3524 T 0.3053 T 0.0093 1.2384 (1.05–1.46)

rs12243326 520 876 0.3212 C 0.2785 C 0.0169 1.2253 (1.04–1.45)

rs12255372 510 847 0.3245 T 0.2816 T 0.0178 1.2257 (1.04–1.45)

rs5215 527 882 0.3672 C 0.3702 C 0.8728 1.0130 (0.86–1.19)

rs5219 533 888 0.3715 T 0.3705 T 0.9580 1.0042 (0.86–1.18)

rs8050136 533 886 0.4053 A 0.3916 A 0.4731 1.0584 (0.91–1.24)

Ancestry: Non-Hispanic European þ Unknown; Case Definition: Definite

rs4402960 548 1089 0.3139 T 0.3159 T 0.9067 1.0094 (0.86–1.18)

rs10811661 555 1103 0.1604 C 0.1727 C 0.3700 1.0931 (0.90–1.33)

rs4506565 553 1100 0.3535 T 0.3100 T 0.0117 1.2172 (1.04–1.42)

rs12243326 541 1088 0.3226 C 0.2845 C 0.0251 1.1976 (1.02–1.40)

rs12255372 530 1048 0.3236 T 0.2863 T 0.0305 1.1928 (1.02–1.40)

rs5215 547 1098 0.3656 C 0.3643 C 0.9404 1.0057 (0.87–1.17)

rs5219 554 1103 0.3700 T 0.3649 T 0.7728 1.0223 (0.88–1.19)

rs8050136 554 1102 0.4043 A 0.3897 A 0.4177 1.0628 (0.92–1.23)
advantages. In some instances, the case diagnosis can be

firmer than that in prospective clinical trials or case-

control studies, because longitudinal information from
The Am
multiple, interacting, trained physicians is available. For

example, differentiating Crohn disease from other condi-

tions such as ulcerative colitis benefits from longitudinal
erican Journal of Human Genetics 86, 560–572, April 9, 2010 565



Figure 2. Odds Ratios for Comparisons of Cases versus Controls for Each SNP Evaluated
These are ordered by the number of cases required for replication (‘‘number needed’’ column), calculated from the previously reported
odds ratio (ORPR, red square; see text). The blue diamonds indicate the point estimate of the allelic OR derived from the present analysis.
The error bars indicate the confidence interval of the allelic OR derived from the present analysis. This analysis used only definite cases in
which European ancestry had been assigned. AF, atrial fibrillation; CD, Crohn disease; MS, multiple sclerosis; RA, rheumatoid arthritis;
T2D, type 2 diabetes.
information from multiple, interacting, trained physicians

when available. Similarly, controls may also represent

a more definite phenotype than those in traditional

research cohorts because there is an average of 6.6 yrs of

follow up in the EMR. In our study, replication of geno-

type-phenotype associations was slightly improved by

incorporation of definite þ probable phenotypes in rheu-

matoid arthritis, but the sample sizes are small.

In this experiment, we did not replicate any association

with an ORPR < 1.25 or an estimated number of required

cases > 1000. Because it was undertaken early in the

growth of the biobank, the study was anticipated to be

underpowered to assess many of the analyses attempted,

given the prevalence of the diseases of interest in the first

10,000 samples accrued. Our failure to replicate could

also have arisen because these associations could be impor-

tant only in certain populations. This highlights one of the

advantages of large DNA resources such as BioVU: simple

extrapolation indicates that with the current size of the

biobank, 18/21 tests of replication would be adequately

powered. It is noteworthy that the OR point estimates

for all 21 associations evaluated were in the expected direc-

tion. Larger populations may also permit discovery of new

genetic associations.
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However, we successfully replicated genotype-phenotype

associations that were underpowered. Although this could

reflect simple statistical variation for a few SNPs, it was

observed in multiple analyses for multiple diseases. It is

conceivable that that the phenotype criteria used here

result in a more stringently defined case than in the original

studies that identified the genotype-phenotype associa-

tion. In addition, other studies have used controls drawn

from apparently healthy populations,16 and to the extent

that these include subjects who actually have disease, the

EMR-based approach that we have used may be superior.

It is also possible that the risk alleles are enriched in the pop-

ulation studied, although we observed this phenomenon

with multiple diagnoses. Studies in other data sets will be

required to address this issue and are a goal of the National

Human Genome Research Institute’s eMERGE Network.29

A long-term goal of BioVU and similar resources30 is to

provide a platform for evaluating and overcoming barriers

to incorporation of genomic and other high-dimensional

data into clinical medicine. One challenge is to determine

the added value of a particular genotype or set of genotypes

in clinical care. To address this question, data sets much

larger than those ordinarily accrued into clinical trials

may be required.31 Thus, EMR-based biobanks like BioVU
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may be not only useful but in fact indispensible in

advancing this field. Moreover, as this experiment demon-

strates, EMR-based phenotyping can rapidly generate large

numbers of subjects across multiple diseases. Thus, the

approach that we describe ultimately provides a platform

for assessment and validation of genotype-phenotype

associations in clinical practice. In addition, the method

provides an opportunity to generate a closed loop: as

health care information accumulates, genotype-pheno-

type associations will become increasingly well defined,

ultimately identifying common genotype variants that

are useful in clinical medicine.
Table A1. ICD-9 and CPT Codes Used for Excluding Heart
Transplant

Description ICD-9/CPT Code

Heart replaced by transplant V42.01

Anesthesia for heart transplant or heart/lung
transplant

580

Complications of transplanted heart 996.83

Heart-lung transplant with recipient
cardiectomy-pneumonectomy

33935

Heart transplant, with or without recipient
cardiectomy

33945
Appendix: Selection of Cases and Controls

General Approach

Phenotype-selection algorithms used a combination of

queries of structured billing codes and unstructured

‘‘natural language’’ clinical notes. Most algorithms com-

bined a search for disease codes taken from International

Classification of Diseases, version 9-CM (ICD-9), and

procedure codes from Current Procedural Terminology

(CPT) billing records, with textual searches for medication

names used to treat the disease. For all text searches, we

included synonyms, abbreviations, acronyms, and com-

mon misspellings for all terms (including generic and

brand names for medications), assisted by standardized

vocabularies such as the Unified Medical Language

System (UMLS; see Web Resources) and natural language

processing tools such as the KnowledgeMap concept

identifier.32

We required that control records have ‘‘minimum

content information,’’ defined as an inpatient history and

physical admission document or comprehensive outpa-

tient clinic note that included nonempty medication and

past medical history sections.

We removed ‘‘family medical history’’ sections from all

clinical notes prior to processing.33

The algorithms considered inpatient admission notes,

progress notes, and discharge summaries; all outpatient

clinic notes (> 97% of all outpatient encounters produce

notes available in electronic formats since about 2001);

all problem lists (these include key diagnoses and proce-

dures, and allergy and medication lists); and the cardiolo-

gist-generated electrocardiogram (ECG) impressions.

For Crohn disease, many records included codes for

both ulcerative colitis and Crohn disease (e.g., a patient

initially thought to have ulcerative colitis who later has a

biopsy confirming Crohn disease). To differentiate them,

the algorithm also used the ratio of billing codes for each

disease.

In each case, content experts were consulted to identify

potentially overlapping diseases (such as other autoim-

mune diseases for rheumatoid arthritis, Crohn disease,

and multiple sclerosis) that we excluded from both cases

and controls.
The Am
Each algorithm was validated and adjusted to achieve

target positive and negative predictive values, as described

in the text. The final algorithms used to select cases and

controls are described in further detail below.
Atrial Fibrillation

For all cases, we considered atrial fibrillation and atrial

flutter as similar entities. We excluded all patients who

had received heart transplants (identified by CPT codes;

Table A1).
Definite cases: To identify definite cases, we required a cardi-

ologist diagnosis of atrial fibrillation as identified by

a natural language processing tool from the unstructured

free text of the ‘‘ECG impression;’’ i.e., an ECG with an offi-

cial interpretation of atrial fibrillation. These were identi-

fied by first taking all ECG impressions (n ¼ 14,569) and

processing them with the KnowledgeMap concept identi-

fier. This tool34 maps unstructured free text to standardized

biomedical concepts with their assertion or negation

status (e.g., ‘‘no atrial fibrillation’’ becomes ‘‘C0004238

Atrial Fibrillation, status: negated’’ in which ‘‘C0004238’’

represents a unique identifier for the concept of ‘‘atrial

fibrillation’’ and its synonyms). There were only two

negated atrial fibrillation or flutter concepts, both in

records that had prior ECGs indicating atrial fibrillation

(e.g., ‘‘compared with prior ECG, atrial fibrillation has

resolved’’).

Controls: To be a control, a record had to meet all of the

conditions below:

d Contain at least one ECG whose impression does not

mention atrial fibrillation (or synonym).

d Contain no ICD-9 codes representing atrial flutter or

atrial fibrillation (Table A2).

d Contain no free-text matches for atrial fibrillation or

synonyms.

d Contain no free-text references (including synonyms)

to: direct-current cardioversion, atrial tachycardia or

multifocal atrial tachycardia, atrioventricular nodal

ablation.
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Table A2. ICD-9 Codes for Atrial Fibrillation or Atrial Flutter

Description ICD-9 Code

Atrial fibrillation 427.31

Atrial fibrillation and flutter 427.3

Atrial flutter 427.32

Table A3. Continued

Description ICD-9 Code

Sarcoidosis 135

Psoriasis and similar disorders 696

Psoriatic arthropathy 696.0

Other psoriasis and similar disorders 696.1

excluding psoriatic arthropathy

Other psoriasis and similar disorders 696.8

Reiter disease 099.3

Palindromic rheumatism 719.3

Ankylosing spondylitis 720.*

Thoracic spondylosis without myelopathy 721.2

Lumbosacral spondylosis without
myelopathy

721.3

Hashimoto thyroiditis 245.2

Toxic diffuse goiter 242.0

Myasthenia gravis 358.0*

Neonatal myasthenia gravis 775.2

Raynaud syndrome 443

Reiter disease 099.3

Multiple sclerosis 340

Demyelinating disease of the central nervous
system, unspecified

341.9

Irritable bowel disease 564.1

Ulcerative enterocolitis 556.*
Crohn Disease

Definite cases: To be considered a definite case, a record had

to contain all of the following:

d At least one ICD-9 code for Crohn disease (555.*). If

also containing an ICD-9 code for ulcerative colitis

(556.*), we required that the ratio of Crohn disease

ICD-9 codes to ulcerative colitis ICD-9 codes was R 2.

d At least one medication used to treat Crohn disease,

such as: balsalazide, mesalamine, sulfasalazine, cipro-

floxacin, levofloxacin, metronidazole, rifaximin, pre-

dnisone, budesonide, azathioprine, mercaptopurine,

methotrexate, infliximab, adalimumab, certolizumab,

natalizumab.

Controls: These were defined as a record with ‘‘minimum

content information’’ described above, plus none of the

following:

d Any free-text references to key autoimmune diseases

or inflammatory bowel disease: rheumatoid arthritis,

Felty syndrome, juvenile arthritis, lupus, inflamma-

tory bowel disease, Crohn disease, ulcerative colitis,

reactive arthritis, sarcoidosis, ankylosing spondylitis,

Hashimoto thyroiditis, polymyositis, dermatomyosi-

tis, chronic lymphocytic thyroiditis, autoimmune

thyroid disease, Graves disease, Raynaud disease,

multiple sclerosis.

d ICD-9 codes indicating another autoimmune diseases

or inflammatory bowel disease (Table A3).
Table A3. ICD-9 Codes Indicating Another Autoimmune Disease
or Inflammatory Bowel Disease

Description ICD-9 Code

Rheumatoid arthritis and other
inflammatory polyarthropathies

714.*

Discoid lupus erythematosus of eyelid 373.34

Lupus erythematosus 695.4

Systemic lupus erythematosus 710.0

Systemic sclerosis 710.1

Sjogren disease 710.2

Dermatomyositis 710.3

Polymyositis 710.4

Regional enteritis of small intestine 555.*
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Multiple Sclerosis

Definite cases: To be considered a definite case, a record had

to meet one of the following two case definitions:

d Case definition 1: Presence of an ICD-9 code for

multiple sclerosis (340).

d Case definition 2: Any record matching all of the

following:
010
o One of the following ICD-9 codes: 341.9, demye-

linating disease of the central nervous system,

unspecified; 323.9, transverse myelitis.

o Any of the following medications: interferon-b 1a,

interferon-b 1b, glatiramer, natalizumab.

o Text match of ‘‘multiple sclerosis.’’

o No potentially overlapping autoimmune diseases

by ICD-9 code (Table A4).
Possible cases: To be considered a possible case, a record had

to contain all of the following:

d Text match of ‘‘multiple sclerosis’’ in the clinical

record.

d Any one of the following ICD-9 codes: other demye-

linating diseases of central nervous system;



demyelinating disease of the central nervous system,

unspecified; optic neuritis.

d No potentially overlapping autoimmune diseases by

ICD-9 code (Table A4).

Because of the small number of cases of multiple sclerosis,

we manually reviewed all cases and analyzed them with

and without the autoimmune disease exclusions (those

with potentially overlapping autoimmune diseases were

referred to as ‘‘probable cases’’).
Table A4. ICD-9 Codes Indicating Another Autoimmune Disease

Description ICD-9 Code

Rheumatoid arthritis and other
inflammatory polyarthropathies

714.*

Discoid lupus erythematosus of eyelid 373.34

Lupus erythematosus 695.4

Systemic lupus erythematosus 710.0

Systemic sclerosis 710.1

Sjogren disease 710.2

Dermatomyositis 710.3

Polymyositis 710.4

Regional enteritis of small intestine 555.*

Sarcoidosis 135

Psoriasis and similar disorders 696

Psoriatic arthropathy 696.0

Other psoriasis and similar disorders
excluding psoriatic arthropathy

696.1

Other psoriasis and similar disorders 696.8

Reiter disease 099.3

Palindromic rheumatism 719.3

Ankylosing spondylitis 720.*

Thoracic spondylosis without myelopathy 721.2

Lumbosacral spondylosis without
myelopathy

721.3

Hashimoto thyroiditis 245.2

Toxic diffuse goiter 242.0

Myasthenia gravis 358.0*

Neonatal myasthenia gravis 775.2

Raynaud syndrome 443

Table A5. ICD-9 Codes for Rheumatoid Arthritis

Description ICD-9 Code

Rheumatoid arthritis and other
inflammatory polyarthropathies

714

Rheumatoid arthritis 714.0

Felty syndrome 714.1

Other rheumatoid arthritis with visceral or
systemic involvement

714.2

Table A6. ICD-9 Codes Indicating Other Autoimmune Diseases
or Inflammatory Arthritides

Description ICD-9 Code

Reiter disease 099.3

Sarcoidosis 135

Toxic diffuse goiter 242.0

Hashimoto thyroiditis 245.0

Gouty arthropathy 274.0

Multiple sclerosis and other
demyelinating diseases

340, 341.9, 323.9

(Continued on next page)
Controls: To be considered a control, a record had to

contain none of the following:

d Text match for the string ‘‘multiple sclerosis.’’

d A multiple sclerosis ICD-9 code (340, 341.8, 341.9, or

377.3).

d A multiple sclerosis medication.
The Am
d Any free-text references to key autoimmune diseases:

rheumatoid arthritis, Felty syndrome, juvenile rheu-

matoid arthritis, lupus, inflammatory bowel disease,

Crohn disease, ulcerative colitis, sarcoidosis, anky-

losing spondylitis, Hashimoto thyroiditis, reactive

arthritis, polymyositis, dermatomyositis, chronic lym-

phocytic thyroiditis, autoimmune thyroid disease,

Graves disease, Raynaud disease, multiple sclerosis.

Rheumatoid Arthritis

Definite cases: These were defined as any record that met all

of the following criteria:

d Contains a rheumatoid arthritis ICD-9 code (Table A5).
d Contains a rheumatoid arthritis medication (any of

the following): methotrexate, sulfasalazine, minocy-

cline, hydroxychloroquine, adalimumab, etanercept,

infliximab, gold, azathioprine, rituximab, anakinra,

abatacept, leflunomide.

d Contains a text match for ‘‘rheumatoid arthritis’’ in

any clinical note.

d Does not contain any of the following autoimmune

diseases or inflammatory arthritides, by ICD-9

code (Table A6) or by text match: juvenile rheumatoid

arthritis, inflammatory osteoarthritis, reactive arthritis.

As with multiple sclerosis, we analyzed rheumatoid

arthritis cases with and without the autoimmune disease

exclusions. Those with potentially overlapping autoim-

mune diseases were referred to as ‘‘probable cases.’’
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Table A6. Continued

Description ICD-9 Code

Myasthenia gravis 358.0*, 775.2

Raynaud syndrome 443.0

Crohn disease 555.*

Ulcerative colitis 556.*

Irritable bowel syndrome 564.1

Lupus 695.4,710.0, 373.34

Psoriasis 696.*

Systemic sclerosis, Sjogren disease,
and polymyositis

710.1,710.2.
710.3, 710.4

Juvenile rheumatoid arthritis 714.3*

Osteoarthrosis 715.*

Palindromic rheumatism 719.*

Ankylosing spondylitis and other
spondylosis

720.*, 721.2, 721.3

Table A7. Continued

Description ICD-9 Code

Palindromic rheumatism 719.*

Ankylosing spondylitis and other spondylosis 720.*, 721.2, 721.3

Rheumatism, unspecified and fibrositis 729.0
Controls: These were defined as any record that did not

contain any of the following:

d Any ICD-9 code for rheumatoid arthritis, autoim-

mune diseases, or other inflammatory arthritides

(Table A7).

Rheumatism, unspecified and fibrositis 729.0
Table A7. ICD-9 Code for Rheumatoid Arthritis, Autoimmune
Diseases, or Other Inflammatory Arthritides

Description ICD-9 Code

Reiter disease 099.3

Sarcoidosis 135

Toxic diffuse goiter 242.0

Hashimoto thyroiditis 245.0

Gouty arthropathy 274.0

Multiple sclerosis and other
demyelinating diseases

340, 341.9, 323.9

Myasthenia gravis 358.0*, 775.2

Raynaud syndrome 443.0

Crohn disease 555.*

Ulcerative colitis 556.*

Irritable bowel syndrome 564.1

Lupus 695.4, 710.0, 373.34

Psoriasis 696.*

Systemic sclerosis, Sjogren disease,
and polymyositis

710.1, 710.2.
710.3, 710.4

Rheumatoid arthritis and other inflammatory
polyarthropathies

714.*

Osteoarthrosis 715.*
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d Any of the following text in clinical notes: lupus,

inflammatory bowel disease, Crohn disease, ulcera-

tive colitis, multiple sclerosis, transverse myelitis,

progressive systemic sclerosis, scleroderma, acroscle-

rosis, dermatomyositis, polymyositis, sarcoidosis,

psoriasis / psoriatic arthritis, arthritis, osteoarthritis /

degenerative joint disease, reactive arthritis, Sjogren

disease, rheumatism, ankylosing spondylitis, Hashi-

moto thyroiditis, chronic lymphocytic thyroiditis,

autoimmune thyroid disease, Graves disease, myas-

thenia gravis, Raynaud disease.

Type 2 Diabetes

We adapted the type 2 diabetes algorithm designed by Wil-

liam Lowe, Abel Kho, and Wendy Wolf at Northwestern

University as part of the eMERGE Network to identify

patients at Vanderbilt. Notably, ~20% of the records identi-

fied as type 2 diabetes cases also contained diagnostic codes

for type 1 diabetes. Manual review (described in the main

text) of 50 of these cases revealed that all had type 2 diabetes.

Definite cases:

d Any record including a type 2 diabetes ICD-9 code

(Table A8).

d A noninsulin hypoglycemic medication (Table A9).

Controls:

d No type 2 diabetes ICD-9 codes (Table A8).

d No impaired glucose ICD-9 codes (Table A9).

d No family history of diabetes (including type 1, type

2, or unspecified, as identified by keyword searches

of family history sections from clinical notes and

problem lists), because patients with a family history

of diabetes are more likely to develop diabetes in the

future (and thus end up being cases).

d No abnormal labs: glucose < 110 mg/dl, hemoglobin

A1c < 6.0%.
Table A8. ICD-9 Codes Used for Defining Type 2 Diabetes Cases

Description ICD-9 Code

Diabetes II with other coma 250.30

250.32

Diabetes II with hyperosmolarity 250.20

250.22
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Table A8. Continued

Description ICD-9 Code

Diabetes II with unspecified complication 250.90

250.92

Diabetes II with other unspecified manifestation 250.80

250.82

Diabetes II with peripheral circulatory disorder 250.70

250.72

Diabetes II with neurological manifestations 250.60

250.62

Diabetes II with ophthalmic manifestations 250.50

250.52

Diabetes II with renal manifestations 250.40

250.42

Diabetes II without mention of complication 250.00

250.02

Table A9. ICD-9 Code Exclusions for Type 2 Diabetes Controls

Description ICD-9 Code

Impaired fasting glucose 790.21

Impaired oral glucose tolerance test 790.22

Abnormal glucose, not otherwise specified 790.29

Glycosuria 791.5

Gestational diabetes 648.*

Dysmetabolic syndrome 277.7

Diabetes—asymptomatic 790.29

Diabetes (all) 250.*

Renal glycosuria 271.4
Supplemental Data

Supplemental Data include four tables and can be found with this

article online at http://www.ajhg.org.
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